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Abstract

The constitutive relation for the refractive index of dilute solutions of flexible polymer molecules is obtained, and calculations of the
intrinsic birefringence exhibited in uniaxial elongational flow are presented. The polymer molecules are modeled as chains of beads
connected by finitely extensible nonlinear elastic springs under the Peterlin approximation. It is found that at very low elongation rates
there is very little birefringence, but there is a critical elongation rate above which there is substantial birefringence. This critical elongation
rate scales as the inverse square of the number of beads in the chain. At this elongation rate the individual springs in the chains are stretched
and oriented with the flow, but the chains have not uncoiled. It is found that the stress-optic relation holds for elongation rates below the
critical elongation rate. However, the stress-optic coefficient is not constant above the critical rate. In the instantaneous inception of the flow
above the critical elongation rate, the stress optic coefficient initially takes on the value that it would have below the critical elongation rate,
but it decays to a much lower value as the strain increases.q 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Dilute polymer solutions exhibit their most remarkable
properties in strong flows. A flow is defined as being strong
if the velocity gradient tensor has any eigenvalues with
positive real part [1]. The most common examples of strong
flows are shear-free flows in which the fluid is forced to
move in such a manner that the velocity field in it is given
by:

nx ¼ ( ¹ 1=2)(1þ m)ėx;ny ¼ ( ¹ 1=2)(1þ m)ėy;nz ¼ ėz: (1)

Hereė is the elongation rate,m is a parameter that describes
the nature of the flow, andx, y andz are the spatial coordi-
nates. Three special cases are usually considered: whenm¼

0 and ė . 0 the flow is called uniaxial elongational flow,
whenm ¼ 0 andė , 0 the flow is called biaxial stretching
flow, and whenm¼ 1 the flow is called planar elongational
flow.

Dilute polymer solutions show unusual behavior in strong
flows because these flows are capable of deforming the
molecules substantially away from their equilibrium con-
formations. That is, the condition that the velocity gradient
have eigenvalue(s) with positive real part(s) is sufficient
for neighboring fluid elements to move away from one

another exponentially fast, and this can cause appreciable
stretching of the polymer molecules. This molecular stretch-
ing is thought to be a significant factor in phenomena such
as drag reduction in turbulent flow and enhancement of jet
stability. Consequently, the rheology of dilute polymer solu-
tions in strong flows has been the subject of much study.

Because of the low viscosity of dilute polymer solutions,
forcing them to undergo strong flows is a difficult task.
Nonetheless, a number of ingenious ways to approximate
strong flows have been devised. These include crossed slots
[2–7] and four-roll mills [8–10] that approximate planar
elongation in the region around the stagnation point in the
flows. Another type of device that has been used to approx-
imate strong flows employs converging channels [11–14],
but the flow field in this type of geometry appears to be less
homogeneous than those in the others. A frequently used
device employs opposing nozzles or jets [15–23] that can
approximate both uniaxial elongational flow and biaxial
stretching flow. Most of these devices have been used to
examine the optical properties of flowing polymer solutions.
In particular, most have been used to examine the birefrin-
gence exhibited by the solutions at the stagnation point
where the strong flow is approximated. Use of these devices
to study the rheological properties of the fluids requires that
some connection be made between the rheological proper-
ties and the birefringence. Only a few of the studies cited
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above have examined both optical and rheological
properties [20–22].

Interest in uniaxial elongational flows of dilute polymer
solutions has been re-ignited quite recently because of the
development by Sridhar and co-workers [24–26] and by
Spiegelberg and McKinley [27,28] of filament stretching
devices. Such devices are exciting because they not only
allow direct measurement of rheological properties, but
can also provide simultaneous information about the optical
properties (e.g. birefringence) of the liquids. In fact, recent
measurements may indicate deviations from the stress-optic
relation (G.H. McKinley, pers. comm.).

Recent theoretical studies of the behavior of dilute poly-
mer solutions in strong flows have been concerned with the
existence of coil-stretch transitions (see Refs. [29,30] and
the papers cited therein). In addition, the behavior of poly-
mer molecules in strong flows has been simulated by
Acierno et al. [31], Rallison and Hinch [32], and Kobe
and Wiest [33]. However, only the last of these studies
has examined the birefringence shown by the system.
Such an examination is the purpose of the modeling and
calculations presented in this paper. We ask how the bire-
fringence varies with elongation rate in steady uniaxial
elongational flow and whether the stress-optic relation
[34] is valid for these systems and these flows. We also
consider the inception of uniaxial elongational flow in an
attempt to more closely examine the experimental studies
described above.

1.1. Refractive index of a polymer solution

We begin by describing the model that we use to describe
a macromolecule in an infinitely dilute polymer solution.
For brevity, we will use the notation of Bird et al. [35].
This model consists of a chain ofN point masses (‘beads’)
connected byN ¹ 1 massless springs. The chain configura-
tion is described by a set of connector vectorsQN¹1( ¼ Q1,
Q2, …, QN¹1), whereQi is the vector from the center of bead
i to the center of beadi þ 1. The chain is described by a
distribution of internal configurations,w(QN¹1, t), that is
defined such that wdQN¹1 (where dQN¹1 denotes
dQ1dQ2…dQN¹1) is the probability that spring 1 is within
dQ1 of Q1, spring 2 is within dQ2 Of Q2, and so on, at timet.
We indicate integral averages over this distribution function
by angular brackets. The distribution function is governed
by a diffusion equation (cf. eqn 15.1–7) of Bird et al. [35]:

]w

]t
¼ ¹

∑
j

]

]Qj
· [k·Qj ]w ¹

1
z

∑
k

Ajk kT
]w

]Qk
þ HfkQkw

� �( )
:

(2)

In this equation,k is the transpose of the macroscopic
velocity gradient,z is the Stokes’ law friction coefficient
for an individual bead,Ajk is the Rouse matrix (consisting of
twos along the diagonal, ones in the immediate off-diagonal
elements, and zeros elsewhere) ,kT is Boltzmann’s constant

times the absolute temperature, andH is a spring constant.
The sums in Eq. (2) are over all of the springs in the chain
(i.e. from 1 toN ¹ 1). It should be noted that this model does
not incorporate any hydrodynamic or excluded volume
interactions between beads. Thefk in Eq. (2) describe the
tension in the springs; they are functions of theQk,

It is possible to obtain an expression for the refractive
index tensor for the polymer solution by considering each
spring in the bead-spring chain to be composed ofns links of
a Kramers chain (i.e. a freely-jointed bead-rod chain). Each
link of the Kramers chain is of lengtha and has parallel and
perpendicular polarizabilitya k anda', respectively. Then it
can be shown [36] that the polarization tensor for a spring
(spring i) is given by:

ai ¼
ns

3
(ak þ 2a')d

þ ns(ak ¹a') 1¹
3Qi =nsa

L¹ 1(Qi =nsa)

� �
1

Q2
i

QiQi ¹
1
3
Q2

i d

� �
,

ð3Þ

whereL¹1 is the inverse Langevin function. In Eq. (3) we
can recognizensa asQ0, the maximum length of the spring.
The refractive index tensor,n, for the dilute solution taking
into account the intrinsic birefringence is given by [37]:

n ¼ nd þ
2p

9n
(n2 þ 2)2cÑ

∑
i

ai ¹
1
3
traid

� �
, (4)

where n is the isotropic refractive index,c is the molar
concentration of chains, andÑ is Avogodro’s number. Com-
bining Eqs. (3) and (4), we have:

n¼ nd þ A
∑

i

1
Q2

i

1¹
3Qi =Q0

L¹ 1(Qi =Q0)

� �
QiQi ¹

1
3
Q2

i d

� �� �
,

(5)

where we have defined a constantA by:

A¼
2p

9n
(n2 þ 2)2cÑns(ak ¹ a'): (6)

This parameter is determined by the chemical structure of
the macromolecule. Eq. (5) gives the refractive index tensor
in terms of averages over the distribution of internal config-
urations. We can now, in principle, solve Eq. (2) for the
distribution of internal configurations and use the result to
evaluate the averages in Eq. (5).

However, we now introduce Warner’s approximation
[38,39] for the inverse Langevin function by the substitution:

L¹ 1(Qi =Q0) → 3Qi =Q0

1¹ (Qi =Q0)2: (7)

The resulting expression for the refractive index tensor is:

n ¼ nd þ
A

Q2
0

∑
i

〈QiQi 〉 ¹
1
3
〈Q2

i 〉d
� �

: (8)

If we simplify the expression to a dumbbell (two beads, one
spring), then we recover the result of Fuller [40].
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We now introduce finitely extensible nonlinear elastic
springs (FENE springs) [38,39]. For these springs thefk

are given by:

fk ¼ 1¹ (Qk=Q0)2� �¹ 1, (9)

where Q0 is a parameter—the maximum extension of a
spring. Eq. (9) arises as a result of an approximation sug-
gested by Warner [38] for the inverse Langevin function. It
is convenient to express results in terms of a dimensionless
parameterb ¼ HQ2

0=kT. In the limit of infinite b we recover
Rouse chains with Hookean springs.

We now introduce the Peterlin approximation [39,41,42]
by rewriting Eq. (9) as:

fk ¼ 1¹ (〈Q2
k〉=Q2

0)
� �¹ 1

: (10)

That is, we replace the instantaneous extension of the spring
in Eq. (9) by the root-mean-square extension at the prevail-
ing kinematic condition. With this approximation, the set of
moment equations generated from the diffusion equation is
closed at those equations for the second moments. These
equations are obtained by multiplying Eq. (2) by the dyad
Q iQ j and integrating the resulting equations over allQN¹1.
The results are:

d
dt

〈QiQj 〉 ¼ k·〈QiQj 〉 þ 〈QiQj 〉·k† þ (2kT=z)Aij d

¹ (H=z)
∑

k

fk Aik〈QkQj 〉 þ Ajk〈QiQk〉
� �

, (11)

where thefk are given by Eq. (10), andd is the second-order
unit tensor. The superscript dagger indicates the transpose
of a tensor. The initial conditions for Eq. (11) are provided
by the equilibrium distribution function corresponding to
the spring forces given by Eq. (10). They are:

〈QiQj 〉 → Q2
0

bþ 3
dij d as t → ¹ `, (12)

whered ij, is the Kronecker delta. All of the quantities that
we calculate here can be expressed in terms of the second
moments ofw. In fact, under the Peterlin approximation the
set of second moments completely describes the distribution
of configurations. That is, the chain is Gaussian but with
time and kinematic dependent covariances that are
determined by the restriction that the root mean square
extensions of the springs not exceedQ0.

It is significant to note that the form of Eq. (8) does not
rely on the Peterlin approximation. That is, if we were to
apply the Peterlin approximation in Eq. (5), we would
obtain the same results. Of course, the Peterlin approxima-
tion does have an effect on the values taken on by the second
moment tensors appearing in Eq. (8).

In order to test the validity of the stress-optic relation for
this system, we also calculate the stresses predicted by the
model. The expression for the polymer contribution to the

stress tensor is (36):

tp ¼ (N ¹ 1)npkTd ¹ npH
∑

k

fk〈QkQk〉: (13)

In this expression,np is the number density of chains. The
first term on the right-hand side of Eq. (13) arises as a result
of the inertia of the beads. The remaining terms are the
contributions to the stress from the tensions in the springs.
The fk are given by Eq. (10).

1.2. Steady uniaxial elongational flow

In uniaxial elongational flow, Eq. (8) predicts that the
intrinsic birefringence is given by:

Dn¼ nzz¹ nxx ¼
A

Q2
0

∑
i

[〈QizQiz〉 ¹ 〈QixQix〉]: (14)

In Eq. (14),Qik is thekth component of the vectorQ i. To
determine the moment components in Eq. (14), we solve
Eqs. (11) and (12) as a set of coupled nonlinear ordinary
differential equations (in time) for the second moments with
a fourth-order Runge–Kutta routine. Steady flow predic-
tions are determined as the long time asymptotes of the
transient solutions.

In Fig. 1 we present the birefringence predicted by the
model in steady uniaxial elongational flow (i.e. constantė)
for chains of varying numbers of beads. The elongation rate
is made dimensionless by multiplying it by a time constant
defined bylH ¼ z/4H. At low elongation rates, the birefrin-
gence is very small. Then at a critical elongation rate the
birefringence increases dramatically. This is in agreement
with the observations of Keller et al. [2,4–6]. The critical
elongation rate scales as the inverse square of the number of
beads in the chain. Keller et al. [2,4–6] observed experi-
mentally that the critical elongation rate in their experiments
scaled as approximately the inverse 1.5 power of the mole-
cular weight. This difference is probably a consequence of
hydrodynamic interactions. The birefringence saturates

Fig. 1. The birefringence predicted for chains of varying number of beads in
steady uniaxialelongational flow. There is a critical elongation rate below
which the birefringence is very small. This critical elongation rate scales as
N¹2.
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(approaches its large elongation rate asymptote) at relatively
small values of the dimensionless elongation rate.

The intrinsic birefringence is independent of the para-
meterb indicating that it depends upon only the fractional
extensions of the springs and not their total extensions.
However, we should expect that the total birefringence
would depend on the length of the springs because of con-
tributions from form birefringence. The predictions shown
in Fig. 1 are qualitatively very similar to the measurements
of Cathey and Fuller [22].

The stress-optic relation predicts that the stress tensor
should be proportional to the index of refraction tensor
[34]. The relation was originally derived from a Gaussian
network model for crosslinked rubber [43]. For uniaxial
elongational flow, the relation states that:

Dn
tp,xx ¹ tp,zz

¼ C, (15)

whereC is a constant (independent of the elongation rate)
called the stress-optic coefficient. Our predictions for this
ratio (in dimensionless form) are given in Fig. 2 for chains
of varying numbers of beads. At very low elongation rates
the relation does hold. However, above the critical elonga-
tion rate where the birefringence increases in Fig. 1, the
relation no longer holds. At these larger elongation rates
the ‘constant’ decays almost linearly with the reciprocal
of the elongation rate.

We can interpret these results in terms of the conforma-
tion and properties of the chains. In Fig. 3 we present the
mean square end-to-end distance for the chains and the
average moment of inertia about the principal flow axis
(the z-axis). The latter is given in terms of the second
moments of the distribution of internal configurations by:

〈Izz〉
〈Izz〉eq

¼
3(bþ 3)

(N2 ¹ 1)Q2
0

∑
ij

Cij 〈QixQjx þ QiyQjy〉, (16)

where Cij is the Kramers matrix (the inverse of the
Rouse matrix). That is,I zz is the zz component of the

moment of inertia tensor for a chain defined by:
I ¼

∑
n mn{ (Rn·Rn)d ¹ RnRn}, where mn is the mass of a

bead,Rn the position of thenth bead relative to the center-
of-mass of the chain, and the sum extends over all of the
beads in a chain. Thezzcomponent of the average moment
of inertia tensor is a good measure of conformations because
it is equal to zero when the chains are, on average, comple-
tely aligned in the flow direction.

The solid points in Fig. 3 indicate the critical elongation rate
at which the birefringence increases significantly. We see that
the birefringence increases dramatically when the moment of
inertia is less than about 75% of its equilibrium value. The
points also correspond to the elongation rates at which the
mean square end-to-end distance begins to increase signifi-
cantly in Fig. 3. At the critical elongation rates, the decrease
in the moment of inertia indicates that the individual springs
are stretched and oriented with the flow [30], but the small
value for the mean square end-to-end distance indicates that
the entire chain has not become uncoiled. We see that align-
ment of individual springs with the flow gives the most
significant contribution to the intrinsic birefringence.

1.3. Inception of uniaxial elongational flow

We now turn our attention to the inception of uniaxial
elongational flow wherėe(t) ¼ ė0H(t) with H(t) being the
Heaviside unit step function. This is the flow that is exam-
ined in filament stretching devices [24–28], and it also more
closely approximates the flow obtained in opposing nozzle
devices [15–23] in that individual molecules experience a
transient elongation as they approach the stagnation point in
the apparatus. At very low elongation rates, the stress-optic
coefficient is constant. That is, at low elongation rates the
stresses and birefringence grow to their steady state values
with the same time dependence. This growth is indicated in
Fig. 4 whereDnss is the steady flow value of the birefrin-
gence. In that figure we also show the average moment of
inertia of the chains about the principal flow axis. This
indicates that the birefringence reaches its steady-flow

Fig. 2. A test of the stress-optic relation in steady uniaxial elongational flow
for chains of varying numbers of beads. The relation holds at low elonga-
tion rates, but above the critical elongation rate observed in Fig. 1, the
relation no longer holds.

Fig. 3. The mean square end-to-end distance and average moment of inertia
about the principal flow axis for chains of varying numbers of beads in
steady uniaxial elongational flow The solid points indicate the critical
elongation rates that were observed in Fig. 1.
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value as the chains reach their average steady-flow confor-
mations which are primarily coiled [30].

In Fig. 5 we show these quantities for the inception of
flow at an elongation rate that is greater than the critical
elongation rate. At this elongation rate we observe that the
initially spherical envelope enclosing the molecules
becomes substantially aligned by the flow (〈I zz〉 decreases
markedly with time). This alignment is paralleled by a sub-
stantial increase in the birefringence. The ‘knee’ that occurs
in the 〈I zz〉 curve at a Hencky strain of about four is inter-
preted by Wiest et al., [30] as being the point at which the
individual springs in the chain stretch to near their maxi-
mum extensions (before the chain unfolds and becomes
linear). This is the strain at which the birefringence shows
its marked increase. Actual unfolding of the chain does not
effect the intrinsic birefringence (although it would effect
the total birefringence through form birefringence).

Fig. 6 shows the stress-optic coefficient as a function of
time from the inception of uniaxial elongational flow at
several elongation rates. As mentioned above, at the lowest
elongation rate (which is below the critical elongation rate)
the stress optic coefficient is constant. At higher elongation

rates (above the critical elongation rate) the birefringence
responds to the inception of flow before the stresses, and the
coefficient is not constant. However, there is a considerable
period of time (strain) after the inception of the flow during
which the coefficient is nearly constant. Furthermore, this
‘constant’ is the same value that the coefficient would take
at elongation rates below the critical rate.

2. Summary

In summary we can conclude that in steady uniaxial elonga-
tional flow there is a critical elongation rate below which there
is very little intrinsic birefringence and above which the bire-
fringence increases substantially. For the particular model that
we considered, the critical elongation rate scales as the inverse
square of the elongation rate. Furthermore, the stress-optic rela-
tion is valid below this critical elongation rate, but it does not
hold for larger rates. This is disappointing because it indicates
that it may not be possible to use optical techniques to measure
stresses in steady strong flows of dilute polymer solutions.

Our results for non-steady flow indicate that the stress-
optic coefficient is a function of time as well as elongation
rate. However, the transient results indicate that, above the
critical elongation rate, the stress-optic coefficient retains
the value that it would have below the critical elongation
rate for a considerable period of time (strain).

In spite of the perhaps disappointing consequences of the
results presented here regarding the use of birefringence
measurements as a probe of the elongational rheological
properties of dilute polymer solutions, the results may
prove to be quite useful in the study of the process whereby
molecules uncoil in strong flows. Differences in rheological
property predictions of various molecularly-based theories
seem to be somewhat insensitive for examination of this
process, and birefringence measurements may be much
more useful.

Fig. 4. The growth of the birefringence and the decay of the moment of
inertia about the principal flow axis for the inception of uniaxial elonga-
tional flow at an elongation rate that is below the critical elongation rate. At
this elongation rate the stress-optic coefficient is constant (i.e. independent
of time).

Fig. 5. The growth of the birefringence and the decay of the moment of
inertia about the principal flow axis for the inception of uniaxial elonga-
tional flow at an elongation rate that is above the critical elongation rate.

Fig. 6. The stress-optic coefficient as a function of strain in the inception of
uniaxial elongational flow at several elongation rates The two higher elon-
gation rates are above the critical rate. Note that there is a substantial period
of time (strain) after the inception of the flow during which the coefficient is
nearly constant.
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